首页 > 搜索 > 八大排序算法性能对比,数据结构常见的八大排序算法(详细整理)

八大排序算法性能对比,数据结构常见的八大排序算法(详细整理)

互联网 2020-10-26 03:18:42
在线算命,八字测算命理
前言

八大排序,三大查找是《数据结构》当中非常基础的知识点,在这里为了复习顺带总结了一下常见的八种排序算法。常见的八大排序算法,他们之间关系如下:

排序算法.png

他们的性能比较:

性能比较.png下面,利用Python分别将他们进行实现。直接插入排序算法思想:直接插入排序.gif

直接插入排序的核心思想就是:将数组中的所有元素依次跟前面已经排好的元素相比较,如果选择的元素比已排序的元素小,则交换,直到全部元素都比较过。因此,从上面的描述中我们可以发现,直接插入排序可以用两个循环完成:

第一层循环:遍历待比较的所有数组元素第二层循环:将本轮选择的元素(selected)与已经排好序的元素(ordered)相比较。如果:selected > ordered,那么将二者交换代码实现#直接插入排序def insert_sort(L):#遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始for x in range(1,len(L)):#将该元素与已排序好的前序数组依次比较,如果该元素小,则交换#range(x-1,-1,-1):从x-1倒序循环到0for i in range(x-1,-1,-1):#判断:如果符合条件则交换if L[i] > L[i+1]:temp = L[i+1]L[i+1] = L[i]L[i] = temp希尔排序算法思想:希尔排序.png

希尔排序的算法思想:将待排序数组按照步长gap进行分组,然后将每组的元素利用直接插入排序的方法进行排序;每次将gap折半减小,循环上述操作;当gap=1时,利用直接插入,完成排序。同样的:从上面的描述中我们可以发现:希尔排序的总体实现应该由三个循环完成:

第一层循环:将gap依次折半,对序列进行分组,直到gap=1第二、三层循环:也即直接插入排序所需要的两次循环。具体描述见上。代码实现:#希尔排序def insert_shell(L):#初始化gap值,此处利用序列长度的一般为其赋值gap = (int)(len(L)/2)#第一层循环:依次改变gap值对列表进行分组while (gap >= 1):#下面:利用直接插入排序的思想对分组数据进行排序#range(gap,len(L)):从gap开始for x in range(gap,len(L)):#range(x-gap,-1,-gap):从x-gap开始与选定元素开始倒序比较,每个比较元素之间间隔gapfor i in range(x-gap,-1,-gap):#如果该组当中两个元素满足交换条件,则进行交换if L[i] > L[i+gap]:temp = L[i+gap]L[i+gap] = L[i]L[i] =temp#while循环条件折半gap = (int)(gap/2)简单选择排序算法思想简单选择排序.gif

简单选择排序的基本思想:比较+交换。

从待排序序列中,找到关键字最小的元素;如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换;从余下的 N - 1 个元素中,找出关键字最小的元素,重复(1)、(2)步,直到排序结束。因此我们可以发现,简单选择排序也是通过两层循环实现。第一层循环:依次遍历序列当中的每一个元素第二层循环:将遍历得到的当前元素依次与余下的元素进行比较,符合最小元素的条件,则交换。代码实现# 简单选择排序def select_sort(L):#依次遍历序列中的每一个元素for x in range(0,len(L)):#将当前位置的元素定义此轮循环当中的最小值minimum = L[x]#将该元素与剩下的元素依次比较寻找最小元素for i in range(x+1,len(L)):if L[i] < minimum:temp = L[i];L[i] = minimum;minimum = temp#将比较后得到的真正的最小值赋值给当前位置L[x] = minimum堆排序

堆的概念堆:本质是一种数组对象。特别重要的一点性质:任意的叶子节点小于(或大于)它所有的父节点。对此,又分为大顶堆和小顶堆,大顶堆要求节点的元素都要大于其孩子,小顶堆要求节点元素都小于其左右孩子,两者对左右孩子的大小关系不做任何要求。利用堆排序,就是基于大顶堆或者小顶堆的一种排序方法。下面,我们通过大顶堆来实现。

基本思想:堆排序可以按照以下步骤来完成:

首先将序列构建称为大顶堆;(这样满足了大顶堆那条性质:位于根节点的元素一定是当前序列的最大值)

构建大顶堆.png取出当前大顶堆的根节点,将其与序列末尾元素进行交换;(此时:序列末尾的元素为已排序的最大值;由于交换了元素,当前位于根节点的堆并不一定满足大顶堆的性质)

对交换后的n-1个序列元素进行调整,使其满足大顶堆的性质;

Paste_Image.png重复2.3步骤,直至堆中只有1个元素为止

代码实现:

#-------------------------堆排序--------------------------------#**********获取左右叶子节点**********def LEFT(i):return 2*i + 1def RIGHT(i):return 2*i + 2#********** 调整大顶堆 **********#L:待调整序列 length: 序列长度 i:需要调整的结点def adjust_max_heap(L,length,i):#定义一个int值保存当前序列最大值的下标largest = i#执行循环操作:两个任务:1 寻找最大值的下标;2.最大值与父节点交换while (1):#获得序列左右叶子节点的下标left,right = LEFT(i),RIGHT(i)#当左叶子节点的下标小于序列长度 并且 左叶子节点的值大于父节点时,将左叶子节点的下标赋值给largestif (left < length) and (L[left] > L[i]):largest = leftprint('左叶子节点')else:largest = i#当右叶子节点的下标小于序列长度 并且 右叶子节点的值大于父节点时,将右叶子节点的下标值赋值给largestif (right < length) and (L[right] > L[largest]):largest = rightprint('右叶子节点')#如果largest不等于i 说明当前的父节点不是最大值,需要交换值if (largest != i):temp = L[i]L[i] = L[largest]L[largest] = tempi = largestprint(largest)continueelse:break#********** 建立大顶堆 **********def build_max_heap(L):length = len(L)for x in range((int)((length-1)/2),-1,-1):adjust_max_heap(L,length,x)#********** 堆排序 **********def heap_sort(L):#先建立大顶堆,保证最大值位于根节点;并且父节点的值大于叶子结点build_max_heap(L)#i:当前堆中序列的长度.初始化为序列的长度i = len(L)#执行循环:1. 每次取出堆顶元素置于序列的最后(len-1,len-2,len-3...)# 2. 调整堆,使其继续满足大顶堆的性质,注意实时修改堆中序列的长度while (i > 0):temp = L[i-1]L[i-1] = L[0]L[0] = temp#堆中序列长度减1i = i-1#调整大顶堆adjust_max_heap(L,i,0)冒泡排序

基本思想

冒泡排序.gif

冒泡排序思路比较简单:

将序列当中的左右元素,依次比较,保证右边的元素始终大于左边的元素;( 第一轮结束后,序列最后一个元素一定是当前序列的最大值;)对序列当中剩下的n-1个元素再次执行步骤1。对于长度为n的序列,一共需要执行n-1轮比较(利用while循环可以减少执行次数)

*代码实现

#冒泡排序def bubble_sort(L):length = len(L)#序列长度为length,需要执行length-1轮交换for x in range(1,length):#对于每一轮交换,都将序列当中的左右元素进行比较#每轮交换当中,由于序列最后的元素一定是最大的,因此每轮循环到序列未排序的位置即可for i in range(0,length-x):if L[i] > L[i+1]:temp = L[i]L[i] = L[i+1]L[i+1] = temp快速排序算法思想:快速排序.gif快速排序的基本思想:挖坑填数+分治法从序列当中选择一个基准数(pivot)在这里我们选择序列当中第一个数最为基准数将序列当中的所有数依次遍历,比基准数大的位于其右侧,比基准数小的位于其左侧重复步骤1.2,直到所有子集当中只有一个元素为止。用伪代码描述如下:1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中代码实现:#快速排序#L:待排序的序列;start排序的开始index,end序列末尾的index#对于长度为length的序列:start = 0;end = length-1def quick_sort(L,start,end):if start < end:i , j , pivot = start , end , L[start]while i < j:#从右开始向左寻找第一个小于pivot的值while (i < j) and (L[j] >= pivot):j = j-1#将小于pivot的值移到左边if (i < j):L[i] = L[j]i = i+1 #从左开始向右寻找第一个大于pivot的值while (i < j) and (L[i] < pivot):i = i+1#将大于pivot的值移到右边if (i < j):L[j] = L[i]j = j-1#循环结束后,说明 i=j,此时左边的值全都小于pivot,右边的值全都大于pivot#pivot的位置移动正确,那么此时只需对左右两侧的序列调用此函数进一步排序即可#递归调用函数:依次对左侧序列:从0 ~ i-1//右侧序列:从i+1 ~ endL[i] = pivot#左侧序列继续排序quick_sort(L,start,i-1)#右侧序列继续排序quick_sort(L,i+1,end)归并排序

算法思想:

归并排序.gif归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个典型的应用。它的基本操作是:将已有的子序列合并,达到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。归并排序其实要做两件事:分解----将序列每次折半拆分合并----将划分后的序列段两两排序合并因此,归并排序实际上就是两个操作,拆分+合并如何合并?L[first...mid]为第一段,L[mid+1...last]为第二段,并且两端已经有序,现在我们要将两端合成达到L[first...last]并且也有序。首先依次从第一段与第二段中取出元素比较,将较小的元素赋值给temp[]重复执行上一步,当某一段赋值结束,则将另一段剩下的元素赋值给temp[]此时将temp[]中的元素复制给L[],则得到的L[first...last]有序如何分解?在这里,我们采用递归的方法,首先将待排序列分成A,B两组;然后重复对A、B序列分组;直到分组后组内只有一个元素,此时我们认为组内所有元素有序,则分组结束。

代码实现

# 归并排序#这是合并的函数# 将序列L[first...mid]与序列L[mid+1...last]进行合并def mergearray(L,first,mid,last,temp):#对i,j,k分别进行赋值i,j,k = first,mid+1,0#当左右两边都有数时进行比较,取较小的数while (i
免责声明:非本网注明原创的信息,皆为程序自动获取互联网,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责;如此页面有侵犯到您的权益,请给站长发送邮件,并提供相关证明(版权证明、身份证正反面、侵权链接),站长将在收到邮件12小时内删除。

相关阅读

一周热门

查看更多