首页 > 搜索 > 快速icp算法,ICP算法原理及优缺点(简洁明了)_xinxiangwangzhi

快速icp算法,ICP算法原理及优缺点(简洁明了)_xinxiangwangzhi

互联网 2020-10-29 15:47:19
在线算命,八字测算命理

在网上看了很多ICP算法的介绍,都不甚详细。这里转载一篇知乎文章,以为甚是清晰,摘抄部分,以供学习,内容如下: 作者:刘缘 完整链接:https://www.zhihu.com/question/34170804/answer/121533317 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

精配准的模式基本上已经固定为使用ICP算法及其各种变种。ICP算法由Besl and McKay 1992, Method for registration of 3-D shapes文章提出。文中提到的算法不仅仅考虑了点集与点集之间的配准,还有点集到模型、模型到模型的配准等。 简要介绍一下点集到点集ICP配准的算法: 1)ICP算法核心是最小化一个目标函数: 在这里插入图片描述 (这里的表述与原文略微有些不同,原文是用四元数加上一个偏移向量来表达旋转平移变换。)就是一对对应点,总共有对对应点。这个目标函数实际上就是所有对应点之间的欧式距离的平方和。 2)寻找对应点。可是,我们现在并不知道有哪些对应点。因此,我们在有初值的情况下,假设用初始的旋转平移矩阵对source cloud进行变换,得到的一个变换后的点云。然后将这个变换后的点云与target cloud进行比较,只要两个点云中存在距离小于一定阈值(这就是题主所说的ICP中的一个参数),我们就认为这两个点就是对应点。这也是"最邻近点"这个说法的来源。 3)R、T优化。有了对应点之后,我们就可以用对应点对旋转R与平移T进行估计。这里R和T中只有6个自由度,而我们的对应点数量是庞大的(存在多余观测值)。因此,我们可以采用最小二乘等方法求解最优的旋转平移矩阵。一个数值优化问题,这里就不详细讲了。 4)迭代。我们优化得到了一个新的R与T,导致了一些点转换后的位置发生变化,一些最邻近点对也相应的发生了变化。因此,我们又回到了步骤2)中的寻找最邻近点方法。2)3)步骤不停迭代进行,直到满足一些迭代终止条件,如R、T的变化量小于一定值,或者上述目标函数的变化小于一定值,或者邻近点对不再变化等。(这里也是题主所说的ICP算法中的一个参数)

免责声明:非本网注明原创的信息,皆为程序自动获取互联网,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责;如此页面有侵犯到您的权益,请给站长发送邮件,并提供相关证明(版权证明、身份证正反面、侵权链接),站长将在收到邮件12小时内删除。

相关阅读

一周热门

查看更多