首页 > 搜索 > 高斯的算法是什么算法,Gauss-Newton算法学习

高斯的算法是什么算法,Gauss-Newton算法学习

互联网 2020-10-23 02:27:06
在线算命,八字测算命理

Gauss-Newton算法是解决非线性最优问题的常见算法之一,最近研读开源项目代码,又碰到了,索性深入看下。本次讲解内容如下:

 

基本数学名词识记牛顿法推导、算法步骤、计算实例高斯牛顿法推导(如何从牛顿法派生)、算法步骤、编程实例高斯牛顿法优劣总结

 

 

一、基本概念定义

1.非线性方程定义及最优化方法简述

   指因变量与自变量之间的关系不是线性的关系,比如平方关系、对数关系、指数关系、三角函数关系等等。对于此类方程,求解n元实函数f在整个n维向量空间Rn上的最优值点往往很难得到精确解,经常需要求近似解问题。

   求解该最优化问题的方法大多是逐次一维搜索的迭代算法,基本思想是在一个近似点处选定一个有利于搜索方向,沿这个方向进行一维搜索,得到新的近似点。如此反复迭代,知道满足预定的精度要求为止。根据搜索方向的取法不同,这类迭代算法可分为两类:

解析法:需要用目标函数的到函数,

梯度法:又称最速下降法,是早期的解析法,收敛速度较慢

牛顿法:收敛速度快,但不稳定,计算也较困难。高斯牛顿法基于其改进,但目标作用不同

共轭梯度法:收敛较快,效果好

变尺度法:效率较高,常用DFP法(Davidon Fletcher Powell)

 

直接法:不涉及导数,只用到函数值。有交替方向法(又称坐标轮换法)、模式搜索法、旋转方向法、鲍威尔共轭方向法和单纯形加速法等。

 

 

2.非线性最小二乘问题

   非线性最小二乘问题来自于非线性回归,即通过观察自变量和因变量数据,求非线性目标函数的系数参数,使得函数模型与观测量尽量相似。

   高斯牛顿法解决非线性最小二乘问题的最基本方法,并且它只能处理二次函数。(使用时必须将目标函数转化为二次的)

   Unlike Newton'smethod, the Gauss–Newton algorithm can only be used to minimize a sum ofsquared function values

 

 

 

3.基本数学表达

a.梯度gradient,由多元函数的各个偏导数组成的向量

以二元函数为例,其梯度为:

 

b.黑森矩阵Hessian matrix,由多元函数的二阶偏导数组成的方阵,描述函数的局部曲率,以二元函数为例,

 

c.雅可比矩阵 Jacobian matrix,是多元函数一阶偏导数以一定方式排列成的矩阵,体现了一个可微方程与给出点的最优线性逼近。以二元函数为例,

如果扩展多维的话F: Rn-> Rm,则雅可比矩阵是一个m行n列的矩阵:

 

雅可比矩阵作用,如果P是Rn中的一点,F在P点可微分,那么在这一点的导数由JF(P)给出,在此情况下,由F(P)描述的线性算子即接近点P的F的最优线性逼近:

 

d.残差 residual,表示实际观测值与估计值(拟合值)之间的差

 

 

二、牛顿法

牛顿法的基本思想是采用多项式函数来逼近给定的函数值,然后求出极小点的估计值,重复操作,直到达到一定精度为止。

1.考虑如下一维无约束的极小化问题:

 

因此,一维牛顿法的计算步骤如下:

 

 

需要注意的是,牛顿法在求极值的时候,如果初始点选取不好,则可能不收敛于极小点

 

 

2.下面给出多维无约束极值的情形:

若非线性目标函数f(x)具有二阶连续偏导,在x(k)为其极小点的某一近似,在这一点取f(x)的二阶泰勒展开,即:

 

  如果f(x)是二次函数,则其黑森矩阵H为常数,式(1)是精确的(等于号),在这种情况下,从任意一点处罚,用式(2)只要一步可求出f(x)的极小点(假设黑森矩阵正定,所有特征值大于0)

  如果f(x)不是二次函数,式(1)仅是一个近似表达式,此时,按式(2)求得的极小点,只是f(x)的近似极小点。在这种情况下,常按照下面选取搜索方向:

牛顿法收敛的速度很快,当f(x)的二阶导数及其黑森矩阵的逆矩阵便于计算时,这一方法非常有效。【但通常黑森矩阵很不好求】

 

3.下面给出一个实际计算例子。

 

例:试用牛顿法求的极小值

 

解:

 

【f(x)是二次函数,H矩阵为常数,只要任意点出发,只要一步即可求出极小点】

 

三、牛顿高斯法

 

1.      gauss-newton是如何由上述派生的

有时候为了拟合数据,比如根据重投影误差求相机位姿(R,T为方程系数),常常将求解模型转化为非线性最小二乘问题。高斯牛顿法正是用于解决非线性最小二乘问题,达到数据拟合、参数估计和函数估计的目的。

假设我们研究如下形式的非线性最小二乘问题:

 

这两个位置间残差(重投影误差):

 

如果有大量观测点(多维),我们可以通过选择合理的T使得残差的平方和最小求得两个相机之间的位姿。机器视觉这块暂时不扩展,接着说怎么求非线性最小二乘问题。

若用牛顿法求式3,则牛顿迭代公式为:

 

看到这里大家都明白高斯牛顿和牛顿法的差异了吧,就在这迭代项上。经典高斯牛顿算法迭代步长λ为1.

那回过头来,高斯牛顿法里为啥要舍弃黑森矩阵的二阶偏导数呢?主要问题是因为牛顿法中Hessian矩阵中的二阶信息项通常难以计算或者花费的工作量很大,而利用整个H的割线近似也不可取,因为在计算梯度时已经得到J(x),这样H中的一阶信息项JTJ几乎是现成的。鉴于此,为了简化计算,获得有效算法,我们可用一阶导数信息逼近二阶信息项。注意这么干的前提是,残差r接近于零或者接近线性函数从而接近与零时,二阶信息项才可以忽略。通常称为“小残量问题”,否则高斯牛顿法不收敛。

 

3.  举例

接下来的代码里并没有保证算法收敛的机制,在例子2的自嗨中可以看到劣势。关于自变量维数,代码可以支持多元,但两个例子都是一维的,比如例子1中只有年份t,其实可以增加其他因素的,不必在意。

 

例子1,根据美国1815年至1885年数据,估计人口模型中的参数A和B。如下表所示,已知年份和人口总量,及人口模型方程,求方程中的参数。

 

 

// A simple demo of Gauss-Newton algorithm on a user defined function #include #include #include using namespace std;using namespace cv; const double DERIV_STEP = 1e-5;const int MAX_ITER = 100; void GaussNewton(double(*Func)(const Mat &input, const Mat ¶ms), // function pointer const Mat &inputs, const Mat &outputs, Mat ¶ms); double Deriv(double(*Func)(const Mat &input, const Mat ¶ms), // function pointer const Mat &input, const Mat ¶ms, int n); // The user defines their function heredouble Func(const Mat &input, const Mat ¶ms); int main(){// For this demo we're going to try and fit to the function// F = A*exp(t*B)// There are 2 parameters: A Bint num_params = 2; // Generate random data using these parametersint total_data = 8; Mat inputs(total_data, 1, CV_64F);Mat outputs(total_data, 1, CV_64F); //load observation datafor(int i=0; i < total_data; i++) {inputs.at(i,0) = i+1;//load year}//load America populationoutputs.at(0,0)= 8.3;outputs.at(1,0)= 11.0;outputs.at(2,0)= 14.7;outputs.at(3,0)= 19.7;outputs.at(4,0)= 26.7;outputs.at(5,0)= 35.2;outputs.at(6,0)= 44.4;outputs.at(7,0)= 55.9; // Guess the parameters, it should be close to the true value, else it can fail for very sensitive functions!Mat params(num_params, 1, CV_64F); //init guessparams.at(0,0) = 6;params.at(1,0) = 0.3; GaussNewton(Func, inputs, outputs, params); printf("Parameters from GaussNewton: %f %f\n", params.at(0,0), params.at(1,0)); return 0;} double Func(const Mat &input, const Mat ¶ms){// Assumes input is a single row matrix// Assumes params is a column matrix double A = params.at(0,0);double B = params.at(1,0); double x = input.at(0,0); return A*exp(x*B);} //calc the n-th params' partial derivation , the params are ourfinal targetdouble Deriv(double(*Func)(const Mat &input, const Mat ¶ms), const Mat &input, const Mat ¶ms, int n){// Assumes input is a single row matrix // Returns the derivative of the nth parameterMat params1 = params.clone();Mat params2 = params.clone(); // Use central differenceto get derivativeparams1.at(n,0) -= DERIV_STEP;params2.at(n,0) += DERIV_STEP; double p1 = Func(input, params1);double p2 = Func(input, params2); double d = (p2 - p1) / (2*DERIV_STEP); return d;} void GaussNewton(double(*Func)(const Mat &input, const Mat ¶ms), const Mat &inputs, const Mat &outputs, Mat ¶ms){int m = inputs.rows;int n = inputs.cols;int num_params = params.rows; Mat r(m, 1, CV_64F); // residual matrixMat Jf(m, num_params, CV_64F); // Jacobian of Func()Mat input(1, n, CV_64F); // single row input double last_mse = 0; for(int i=0; i < MAX_ITER; i++) {double mse = 0; for(int j=0; j < m; j++) {for(int k=0; k < n; k++) {//copy Independent variable vector, the yearinput.at(0,k) = inputs.at(j,k);} r.at(j,0) = outputs.at(j,0) - Func(input, params);//diff between estimate and observation population mse += r.at(j,0)*r.at(j,0); for(int k=0; k < num_params; k++) {Jf.at(j,k) = Deriv(Func, input, params, k);}} mse /= m; // The difference in mse is very small, so quitif(fabs(mse - last_mse) < 1e-8) {break;} Mat delta = ((Jf.t()*Jf)).inv() * Jf.t()*r;params += delta; //printf("%d: mse=%f\n", i, mse);printf("%d %f\n", i, mse); last_mse = mse;}}

运行结果:

 

 

A=7.0,B=0.26  (初始值,A=6,B=0.3),100次迭代到第4次就收敛了。

若初始值A=1,B=1,则要迭代14次收敛。

下图为根据上面得到的A、B系数,利用matlab拟合的人口模型曲线

例子2:我想要拟合如下模型,

 

由于缺乏观测量,就自导自演,假设4个参数已知A=5,B=1,C=10,D=2,构造100个随机数作为x的观测值,计算相应的函数观测值。然后,利用这些观测值,反推4个参数。

// A simple demo of Gauss-Newton algorithm on a user defined function #include #include #include using namespace std;using namespace cv; const double DERIV_STEP = 1e-5;const int MAX_ITER = 100; void GaussNewton(double(*Func)(const Mat &input, const Mat ¶ms), // function pointer const Mat &inputs, const Mat &outputs, Mat ¶ms); double Deriv(double(*Func)(const Mat &input, const Mat ¶ms), // function pointer const Mat &input, const Mat ¶ms, int n); // The user defines their function heredouble Func(const Mat &input, const Mat ¶ms); int main(){// For this demo we're going to try and fit to the function// F = A*sin(Bx) + C*cos(Dx)// There are 4 parameters: A, B, C, Dint num_params = 4; // Generate random data using these parametersint total_data = 100; double A = 5;double B = 1;double C = 10;double D = 2; Mat inputs(total_data, 1, CV_64F);Mat outputs(total_data, 1, CV_64F); for(int i=0; i < total_data; i++) {double x = -10.0 + 20.0* rand() / (1.0 + RAND_MAX); // random between [-10 and 10]double y = A*sin(B*x) + C*cos(D*x); // Add some noise // y += -1.0 + 2.0*rand() / (1.0 + RAND_MAX); inputs.at(i,0) = x;outputs.at(i,0) = y;} // Guess the parameters, it should be close to the true value, else it can fail for very sensitive functions!Mat params(num_params, 1, CV_64F); params.at(0,0) = 1;params.at(1,0) = 1;params.at(2,0) = 8; // changing to 1 will cause it not to find the solution, too far awayparams.at(3,0) = 1; GaussNewton(Func, inputs, outputs, params); printf("True parameters: %f %f %f %f\n", A, B, C, D);printf("Parameters from GaussNewton: %f %f %f %f\n", params.at(0,0), params.at(1,0),params.at(2,0), params.at(3,0)); return 0;} double Func(const Mat &input, const Mat ¶ms){// Assumes input is a single row matrix// Assumes params is a column matrix double A = params.at(0,0);double B = params.at(1,0);double C = params.at(2,0);double D = params.at(3,0); double x = input.at(0,0); return A*sin(B*x) + C*cos(D*x);} double Deriv(double(*Func)(const Mat &input, const Mat ¶ms), const Mat &input, const Mat ¶ms, int n){// Assumes input is a single row matrix // Returns the derivative of the nth parameterMat params1 = params.clone();Mat params2 = params.clone(); // Use central differenceto get derivativeparams1.at(n,0) -= DERIV_STEP;params2.at(n,0) += DERIV_STEP; double p1 = Func(input, params1);double p2 = Func(input, params2); double d = (p2 - p1) / (2*DERIV_STEP); return d;} void GaussNewton(double(*Func)(const Mat &input, const Mat ¶ms), const Mat &inputs, const Mat &outputs, Mat ¶ms){int m = inputs.rows;int n = inputs.cols;int num_params = params.rows; Mat r(m, 1, CV_64F); // residual matrixMat Jf(m, num_params, CV_64F); // Jacobian of Func()Mat input(1, n, CV_64F); // single row input double last_mse = 0; for(int i=0; i < MAX_ITER; i++) {double mse = 0; for(int j=0; j < m; j++) {for(int k=0; k < n; k++) {input.at(0,k) = inputs.at(j,k);} r.at(j,0) = outputs.at(j,0) - Func(input, params); mse += r.at(j,0)*r.at(j,0); for(int k=0; k < num_params; k++) {Jf.at(j,k) = Deriv(Func, input, params, k);}} mse /= m; // The difference in mse is very small, so quitif(fabs(mse - last_mse) < 1e-8) {break;} Mat delta = ((Jf.t()*Jf)).inv() * Jf.t()*r;params += delta; //printf("%d: mse=%f\n", i, mse);printf("%f\n",mse); last_mse = mse;}}

运行结果,得到的参数并不够理想,50次后收敛了

 

下图中,每次迭代残差并没有持续减少,有反复

 

4.优缺点分析

优点:

对于零残量问题,即r=0,有局部二阶收敛速度

对于小残量问题,即r较小或接近线性,有快的局部收敛速度

对于线性最小二乘问题,一步达到极小点

 

缺点:

对于不是很严重的大残量问题,有较慢的局部收敛速度

对于残量很大的问题或r的非线性程度很大的问题,不收敛

不一定总体收敛

如果J不满秩,则方法无定义

 

对于它的缺点,我们通过增加线性搜索策略,保证目标函数每一步下降,对于几乎所有非线性最小二乘问题,它都具有局部收敛性及总体收敛,即所谓的阻尼高斯牛顿法。

 

其中,ak为一维搜索因子

免责声明:非本网注明原创的信息,皆为程序自动获取互联网,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责;如此页面有侵犯到您的权益,请给站长发送邮件,并提供相关证明(版权证明、身份证正反面、侵权链接),站长将在收到邮件12小时内删除。

相关阅读

一周热门

查看更多